Keywords: orthogonal polynomials, spatiotemporal, event-based, convolutional neural networks, object detection
TL;DR: using polynomials to build spatio-temporal networks
Abstract: We introduce a class of neural networks named PLEIADES (PoLynomial Expansion In Adaptive Distributed Event-based Systems), which contains temporal convolution kernels generated from orthogonal polynomial basis functions. We focus on interfacing these networks with event-based data to perform online spatiotemporal classification and detection with low latency. By virtue of using structured temporal kernels and event-based data, we have the freedom to vary the sample rate of the data along with the discretization step-size of the network without additional finetuning. We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large margins with significantly smaller memory and compute costs. We achieved: 1) 99.59% accuracy with 192K parameters on the DVS128 hand gesture recognition dataset and 100\% with a small additional output filter; 2) 99.58% test accuracy with 277K parameters on the AIS 2024 eye tracking challenge; and 3) 0.556 mAP with 576k parameters on the PROPHESEE 1 Megapixel Automotive Detection Dataset.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 1176
Loading