Efficient Lifelong Model Evaluation in an Era of Rapid Progress

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: benchmarking, efficient model evaluation
TL;DR: This work addresses the challenge of spiraling evaluation cost through an efficient evaluation framework called Sort & Search (S&S).
Abstract: Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling \textit{ever-expanding} large-scale benchmarks called \textit{Lifelong Benchmarks}. As exemplars of our approach, we create \textit{Lifelong-CIFAR10} and \textit{Lifelong-ImageNet}, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: \textit{Sort \& Search (S\&S)}, which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across $\sim$31,000 models demonstrate that \textit{S\&S} achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours ($\sim$1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the ``benchmark exhaustion'' problem.
Supplementary Material: zip
Primary Area: Evaluation (methodology, meta studies, replicability and validity)
Submission Number: 20464
Loading