Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach

Published: 21 Sept 2023, Last Modified: 14 Jan 2024NeurIPS 2023 spotlightEveryoneRevisionsBibTeX
Keywords: online learning
Abstract: In this paper, we propose an online convex optimization approach with two different levels of adaptivity. On a higher level, our approach is agnostic to the unknown types and curvatures of the online functions, while at a lower level, it can exploit the unknown niceness of the environments and attain problem-dependent guarantees. Specifically, we obtain $\mathcal{O}(\log V_T)$, $\mathcal{O}(d \log V_T)$ and $\hat{\mathcal{O}}(\sqrt{V_T})$ regret bounds for strongly convex, exp-concave and convex loss functions, respectively, where $d$ is the dimension, $V_T$ denotes problem-dependent gradient variations and the $\hat{\mathcal{O}}(\cdot)$-notation omits $\log V_T$ factors. Our result not only safeguards the worst-case guarantees but also directly implies the small-loss bounds in analysis. Moreover, when applied to adversarial/stochastic convex optimization and game theory problems, our result enhances the existing universal guarantees. Our approach is based on a multi-layer online ensemble framework incorporating novel ingredients, including a carefully designed optimism for unifying diverse function types and cascaded corrections for algorithmic stability. Notably, despite its multi-layer structure, our algorithm necessitates only one gradient query per round, making it favorable when the gradient evaluation is time-consuming. This is facilitated by a novel regret decomposition equipped with carefully designed surrogate losses.
Submission Number: 14157
Loading