Conformal Language Model Reasoning with Coherent Factuality

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: language models, reasoning, conformal prediction, factuality, graph representation, coherence
TL;DR: We apply conformal prediction on dependency graphs towards ensuring coherence and factuality in language model reasoning.
Abstract: Language models are increasingly being used in important decision pipelines, so ensuring the correctness of their outputs is crucial. Recent work has proposed evaluating the “factuality” of claims decomposed from a language model generation and applying conformal prediction techniques to filter out those claims that are not factual. This can be effective for tasks such as information retrieval, where constituent claims may be evaluated in isolation for factuality, but is not appropriate for reasoning tasks, as steps of a logical argument can be evaluated for correctness only within the context of the claims that precede them. To capture this, we define “coherent factuality” and develop a conformal-prediction-based method to guarantee coherent factuality for language model outputs. Our approach applies split conformal prediction to subgraphs within a "deducibility" graph that represents the steps of a reasoning problem. We evaluate our method on mathematical reasoning problems from the MATH and FELM datasets and find that our algorithm consistently produces correct and substantiated orderings of claims, achieving coherent factuality across target coverage levels. Moreover, we achieve 90\% factuality on our stricter definition while retaining 80\% or more of the original claims, highlighting the utility of our deducibility-graph-guided approach.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12804
Loading