Keywords: Self-Supervised Learning, Data Augmentation, Pretraining
TL;DR: We propose Hard View Pretraining, a learning-free self-supervised method generating challenging samples based on the model’s state, improving multiple baselines by 1% linear eval. accuracy, including a 0.6% boost for DINO ViT-B/16, reaching 78.80%.
Abstract: Self-Supervised Learning (SSL) methods typically rely on random image augmentations, or views, to make models invariant to different transformations. We hypothesize that the efficacy of pretraining pipelines based on conventional random view sampling can be enhanced by explicitly selecting views that benefit the learning progress. A simple yet effective approach is to select hard views that yield a higher loss. In this paper, we propose Hard View Pretraining (HVP), a learning-free strategy that extends random view generation by exposing models to more challenging samples during SSL pretraining. HVP encompasses the following iterative steps: 1) randomly sample multiple views and forward each view through the pretrained model, 2) create pairs of two views and compute their loss, 3) adversarially select the pair yielding the highest loss according to the current model state, and 4) perform a backward pass with the selected pair. In contrast to existing hard view literature, we are the first to demonstrate hard view pretraining's effectiveness at scale, particularly training on the full ImageNet-1k dataset, and evaluating across multiple SSL methods, Convolutional Networks, and Vision Transformers. As a result, HVP sets a new state-of-the-art on DINO ViT-B/16, reaching 78.8% linear evaluation accuracy (a 0.6% improvement) and consistent gains of 1% for both 100 and 300 epoch pretraining, with similar improvements across transfer tasks in DINO, SimSiam, iBOT, and SimCLR.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1120
Loading