Keywords: Human-aligned models, robust neural networks, visual perception, perceptual learning, medical machine learning
TL;DR: Robust artificial neural networks can be used to design effective training strategies for enhancing visual category learning in human subjects, resulting in significant improvements in human accuracy and efficiency across multiple image domains.
Abstract: The currently leading artificial neural network models of the visual ventral stream - which are derived from a combination of performance optimization and robustification methods - have demonstrated a remarkable degree of behavioral alignment with humans on visual categorization tasks. We show that image perturbations generated by these models can enhance the ability of humans to accurately report the ground truth class. Furthermore, we find that the same models can also be used out-of-the-box to predict the proportion of correct human responses to individual images, providing a simple, human-aligned estimator of the relative difficulty of each image. Motivated by these observations, we propose to augment visual learning in humans in a way that improves human categorization accuracy at test time. Our learning augmentation approach consists of (i) selecting images based on their model-estimated recognition difficulty, and (ii) applying image perturbations that aid recognition for novice learners. We find that combining these model-based strategies leads to categorization accuracy gains of 33-72% relative to control subjects without these interventions, on unmodified, randomly selected held-out test images. Beyond the accuracy gain, the training time for the augmented learning group was also shortened by 20-23%, despite both groups completing the same number of training trials. We demonstrate the efficacy of our approach in a fine-grained categorization task with natural images, as well as two tasks in clinically relevant image domains - histology and dermoscopy - where visual learning is notoriously challenging. To the best of our knowledge, our work is the first application of artificial neural networks to increase visual learning performance in humans by enhancing category-specific image features.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13281
Loading