Keywords: Efficient Network, Codebook Distillation, Board Game, Gomoku
TL;DR: This paper introduces Rapfi, an efficient Gomoku AI agent that outperforms CNN-based agents in limited computational environments by using a compact neural network and incremental update scheme, achieving top rankings in competitions.
Abstract: Games have played a pivotal role in advancing artificial intelligence, with AI agents using sophisticated techniques to compete. Despite the success of neural network based game AIs, their performance often requires significant computational resources. In this paper, we present Rapfi, an efficient Gomoku agent that outperforms CNN-based agents in limited computation environments. Rapfi leverages a compact neural network with a pattern-based codebook distilled from CNNs, and an incremental update scheme that minimizes computation when input changes are minor. This new network uses computation that is orders of magnitude less to reach a similar accuracy of much larger neural networks such as Resnet. Thanks to our incremental update scheme, depth-first search methods such as the $\alpha$-$\beta$ search can be significantly accelerated. With a carefully tuned evaluation and search, Rapfi reached strength surpassing Katagomo, the strongest open-source Gomoku AI based on AlphaZero's algorithm, under limited computational resources where accelerators like GPUs are absent. Rapfi ranked first among 520 Gomoku agents on Botzone and won the championship in GomoCup 2024.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6320
Loading