Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models

ACL ARR 2024 June Submission3545 Authors

16 Jun 2024 (modified: 02 Jul 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Parameter-efficient fine-tuning~(\textbf{PEFT}) is crucial for customizing Large Language Models (LLMs) with constrained resource. Although there have been various PEFT methods for dense-architecture LLMs, PEFT for sparse-architecture LLMs is still underexplored. In this work, we study the PEFT method for LLMs with the Mixture-of-Experts (MoE) architecture and the contents of this work are mainly threefold: (1) We investigate the dispersion degree of the activated experts in customized tasks, and found that the routing distribution for specific task tend to be highly concentrated, while the distribution of activated experts varies significantly across different tasks. (2) We propose the expert-specialized fine-tuning method, which tunes the experts most relevant to downstream tasks while freezing the other experts; experimental results demonstrate that our method not only improves the tuning efficiency, but also matches or even surpasses the performance of full-parameter fine-tuning. (3) We further analyze the impact of the MoE architecture on expert-specialized fine-tuning. We find that MoE models with finer-grained experts are more advantageous in selecting the combination of experts that are most relevant to downstream tasks, thereby enhancing the both the training efficiency and effectiveness.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: sparse models; fine-tuning
Contribution Types: Approaches to low-resource settings, Approaches low compute settings-efficiency
Languages Studied: English, Chinese
Submission Number: 3545
Loading