Adversarially Learned InferenceDownload PDF

Published: 06 Feb 2017, Last Modified: 22 Oct 2023ICLR 2017 PosterReaders: Everyone
Abstract: We introduce the adversarially learned inference (ALI) model, which jointly learns a generation network and an inference network using an adversarial process. The generation network maps samples from stochastic latent variables to the data space while the inference network maps training examples in data space to the space of latent variables. An adversarial game is cast between these two networks and a discriminative network that is trained to distinguish between joint latent/data-space samples from the generative network and joint samples from the inference network. We illustrate the ability of the model to learn mutually coherent inference and generation networks through the inspections of model samples and reconstructions and confirm the usefulness of the learned representations by obtaining a performance competitive with other recent approaches on the semi-supervised SVHN task.
TL;DR: We present and adverserially trained generative model with an inference network. Samples quality is high. Competitive semi-supervised results are achieved.
Conflicts: umontreal.ca
Keywords: Computer vision, Deep learning, Unsupervised Learning, Semi-Supervised Learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 10 code implementations](https://www.catalyzex.com/paper/arxiv:1606.00704/code)
16 Replies

Loading