An Alternative to Variance: Gini Deviation for Risk-averse Policy Gradient

Published: 21 Sept 2023, Last Modified: 31 Dec 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: risk-averse RL, mean-variance RL
TL;DR: We propose an alternative risk measure, Gini deviation, as a substitute for variance, and derive a policy gradient algorithm to minimize it.
Abstract: Restricting the variance of a policy’s return is a popular choice in risk-averse Reinforcement Learning (RL) due to its clear mathematical definition and easy interpretability. Traditional methods directly restrict the total return variance. Recent methods restrict the per-step reward variance as a proxy. We thoroughly examine the limitations of these variance-based methods, such as sensitivity to numerical scale and hindering of policy learning, and propose to use an alternative risk measure, Gini deviation, as a substitute. We study various properties of this new risk measure and derive a policy gradient algorithm to minimize it. Empirical evaluation in domains where risk-aversion can be clearly defined, shows that our algorithm can mitigate the limitations of variance-based risk measures and achieves high return with low risk in terms of variance and Gini deviation when others fail to learn a reasonable policy.
Supplementary Material: zip
Submission Number: 12585
Loading