Pre-training Sequence, Structure, and Surface Features for Comprehensive Protein Representation Learning

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Protein representation learning, self-supervised learning, implicit neural representation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We describe a new pre-training approach for protein representation learning using generalizable implicit neural networks on protein molecular surfaces, showing SOTA results for various tasks.
Abstract: Proteins can be represented in various ways, including their sequences, 3D structures, and surfaces. While recent studies have successfully employed sequence- or structure-based representations to address multiple tasks in protein science, there has been significant oversight in incorporating protein surface information, a critical factor for protein function. In this paper, we present a pre-training strategy that incorporates information from protein sequences, 3D structures, and surfaces to improve protein representation learning. Specifically, we utilize Implicit Neural Representations (INRs) for learning surface characteristics, and name it ProteinINR. We confirm that ProteinINR successfully reconstructs protein surfaces, and integrate this surface learning into the existing pre-training strategy of sequences and structures. Our results demonstrate that our approach can enhance performance in various downstream tasks, thereby underscoring the importance of including surface attributes in protein representation learning. These findings underline the importance of understanding protein surfaces for generating effective protein representations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 6755
Loading