Graph Priors for Deep Neural NetworksDownload PDF

12 Feb 2018 (modified: 04 Jun 2018)ICLR 2018 Workshop SubmissionReaders: Everyone
  • Keywords: Graph Convolutions, Computational Biology, Gene Expression
  • TL;DR: Methods to prior a deep models using information contained in graphs.
  • Abstract: In this work we explore how gene-gene interaction graphs can be used as a prior for the representation of a model to construct features based on known interactions between genes. Most existing machine learning work on graphs focuses on building models when data is confined to a graph structure. In this work we focus on using the information from a graph to build better representations in our models. We use the percolate task, determining if a path exists across a grid for a set of node values, as a proxy for gene pathways. We create variants of the percolate task to explore where existing methods fail. We test the limits of existing methods in order to determine what can be improved when applying these methods to a real task. This leads us to propose new methods based on Graph Convolutional Networks (GCN) that use pooling and dropout to deal with noise in the graph prior.
4 Replies

Loading