A Family of Robust Stochastic Operators for Reinforcement LearningDownload PDF

02 Dec 2019 (modified: 05 May 2023)NeurIPS 2019 Reproducibility Challenge Blind ReportReaders: Everyone
Abstract: We consider a new family of stochastic operators for reinforcement learning with the goal of alleviating negative effects and becoming more robust to approximation or estimation errors. Various theoretical results are established, which include showing that our family of operators preserve optimality and increase the action gap in a stochastic sense. Our empirical results illustrate the strong benefits of our robust stochastic operators, significantly outperforming the classical Bellman operator and recently proposed operators.
Track: Replicability
NeurIPS Paper Id: https://openreview.net/forum?id=B1M-ASSgUS&noteId=rJxgbf5WuS
4 Replies

Loading