Supplementary Material: pdf
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: neural networks, dynamical systems, chaotic systems, periodic attractor, stable attractors
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We introduce OS-net (Orbitally Stable neural NETworks), a new family of neural network architectures specifically designed for periodic dynamical data. OS-net is a special case of Neural Ordinary Differential Equations (NODEs) and takes fully advantage of the adjoint method based backpropagation method. Utilizing ODE theory, we derive conditions on the network weights to ensure stability of the resulting dynamics. We demonstrate the efficacy of our approach by applying OS-net to discover the dynamics underlying the R\"{o}ssler and Sprott's systems, two dynamical systems known for their period doubling attractors and chaotic behavior.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4014
Loading