Explaining Temporal Graph Models through an Explorer-Navigator FrameworkDownload PDF

Published: 01 Feb 2023, 19:21, Last Modified: 27 Feb 2023, 04:49ICLR 2023 posterReaders: Everyone
Keywords: graph neural networks, gnn explainers, temporal graphs
TL;DR: A MCTS-based explainer for temporal graph models.
Abstract: While GNN explanation has recently received significant attention, existing works are consistently designed for static graphs. Due to the prevalence of temporal graphs, many temporal graph models have been proposed, but explaining their predictions remains to be explored. To bridge the gap, in this paper, we propose T-GNNExplainer for temporal graph model explanation. Specifically, we regard a temporal graph constituted by a sequence of temporal events. Given a target event, our task is to find a subset of previously occurred events that lead to the model's prediction for it. To handle this combinatorial optimization problem, T-GNNExplainer includes an explorer to find the event subsets with Monte Carlo Tree Search (MCTS) and a navigator that learns the correlations between events and helps reduce the search space. In particular, the navigator is trained in advance and then integrated with the explorer to speed up searching and achieve better results. To the best of our knowledge, T-GNNExplainer is the first explainer tailored for temporal graph models. We conduct extensive experiments to evaluate the performance of T-GNNExplainer. Experimental results on both real-world and synthetic datasets demonstrate that T-GNNExplainer can achieve superior performance with up to about 50% improvement in Area under Fidelity-Sparsity Curve.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
17 Replies