The Distributional Reward Critic Architecture for Reinforcement Learning Under Confusion Matrix Reward Perturbations

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Reinforcement Learning, policy gradient, reward perturbation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We study reinforcement learning in the presence of an unknown reward perturbation. Existing methodologies for this problem make strong assumptions including reward smoothness, known perturbations, and/or perturbations that do not modify the optimal policy. We study the case of unknown arbitrary perturbations that discretize and shuffle reward space, but have the property that the true reward belongs to the most frequently observed class after perturbation. This class of perturbations generalizes existing classes (and, in the limit, all continuous bounded perturbations) and defeats existing methods. We introduce an adaptive distributional reward critic and show theoretically that it can recover the true rewards under technical conditions. Under the targeted perturbation in discrete and continuous control tasks, we win/tie the highest return in 40/57 settings (compared to 16/57 for the best baseline). Even under the untargeted perturbation, we still win an edge over the baseline designed especially for that setting.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8244
Loading