Keywords: Large language models, Diversity, Reinforcement learning, Post-training
Abstract: Reinforcement learning has emerged as a popular method for post-training large language models (LLMs). While improving the model's performance on downstream tasks, it often reduces the model's output diversity, leading to narrow, canonical responses. Existing methods to enhance diversity are limited, either by operating at inference time or by focusing on lexical differences. We propose a novel training method named DQO (Diversity Quality Optimization) based on determinantal point processes (DPPs) to jointly optimize LLMs for quality and semantic diversity. Our approach samples and embeds a group of responses for each prompt, then uses the determinant of a kernel-based similarity matrix to measure diversity as the volume spanned by the embeddings of these responses. Experiments across instruction-following, summarization, story generation, and reasoning tasks demonstrate that our method substantially improves semantic diversity without sacrificing model quality.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 22681
Loading