Fine-tuning Multimodal LLMs to Follow Zero-shot Demonstrative Instructions

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Multimodal Large Language Models, Demonstrative Instruction
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
Abstract: Recent advancements in Multimodal Large Language Models (MLLMs) have been utilizing Visual Prompt Generators (VPGs) to convert visual features into tokens that LLMs can recognize. This is achieved by training the VPGs on millions of image-caption pairs, where the VPG-generated tokens of images are fed into a frozen LLM to generate the corresponding captions. However, this image-captioning based training objective inherently biases the VPG to concentrate solely on the primary visual contents sufficient for caption generation, often neglecting other visual details. This shortcoming results in MLLMs’ underperformance in comprehending demonstrative instructions consisting of multiple, interleaved, and multimodal instructions that demonstrate the required context to complete a task. To address this issue, we introduce a generic and lightweight Visual Prompt Generator Complete module (VPG-C), which can infer and complete the missing details essential for comprehending demonstrative instructions. Further, we propose a synthetic discriminative training strategy to fine-tune VPG-C, eliminating the need for supervised demonstrative instructions. As for evaluation, we build DEMON, a comprehensive benchmark for demonstrative instruction understanding. Synthetically trained with the proposed strategy, VPG-C achieves significantly stronger zero-shot performance across all tasks of DEMON. Further evaluation on the MME and OwlEval benchmarks also demonstrate the superiority of VPG-C. The code and models are available at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 192