Learning Choice Functions with Gaussian ProcessesDownload PDF

Published: 08 May 2023, Last Modified: 14 Oct 2024UAI 2023Readers: Everyone
Keywords: choice functions, Gaussian Processes, preference learning, Pareto embedding
TL;DR: We develop a Gaussian Process based-method to learn choice functions from choice data via Pareto rationalisation.
Abstract: In consumer theory, ranking available objects by means of preference relations yields the most common description of individual choices. However, preference-based models assume that individuals: (1) give their preferences only between pairs of objects; (2) are always able to pick the best preferred object. In many situations, they may be instead choosing out of a set with more than two elements and, because of lack of information and/or incomparability (objects with contradictory characteristics), they may not be able to select a single most preferred object. To address these situations, we need a choice model which allows an individual to express a set-valued choice. Choice functions provide such a mathematical framework. We propose a Gaussian Process model to learn choice functions from choice data. The model assumes a multiple utility representation of a choice function based on the concept of Pareto rationalization, and derives a strategy to learn both the number and the values of these latent multiple utilities. Simulation experiments demonstrate that the proposed model outperforms the state-of-the-art methods.
Supplementary Material: pdf
Other Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/learning-choice-functions-with-gaussian/code)
0 Replies

Loading