Keywords: ADAM, Combinatorial Bandit, Importance Sampling, Mini-Batch, Optimization, Regret Minimization
Abstract: Adam is a widely used optimizer in neural network training due to its adaptive learning rate. However, because different data samples influence model updates to varying degrees, treating them equally can lead to inefficient convergence. To address this, a prior work proposed adapting the sampling distribution using a bandit framework to select samples adaptively. While promising, the bandit-based variant of Adam suffers from limited theoretical guarantees.
In this paper, we introduce \textit{Adam with Combinatorial Bandit Sampling} (AdamCB), which integrates combinatorial bandit techniques into Adam to resolve these issues. AdamCB is able to fully utilize feedback from multiple samples at once, enhancing both theoretical guarantees and practical performance. Our regret analysis shows that AdamCB achieves faster convergence than Adam-based methods including the previous bandit-based variant. Numerical experiments demonstrate that AdamCB consistently outperforms existing methods.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9967
Loading