Scheduling jobs with stochastic holding costsDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: scheduling, stochastic holding costs, scheduling while learning, $c\mu$ rule, empirical $c\mu$ rule
Abstract: This paper proposes a learning and scheduling algorithm to minimize the expected cumulative holding cost incurred by jobs, where statistical parameters defining their individual holding costs are unknown a priori. In each time slot, the server can process a job while receiving the realized random holding costs of the jobs remaining in the system. Our algorithm is a learning-based variant of the $c\mu$ rule for scheduling: it starts with a preemption period of fixed length which serves as a learning phase, and after accumulating enough data about individual jobs, it switches to nonpreemptive scheduling mode. The algorithm is designed to handle instances with large or small gaps in jobs' parameters and achieves near-optimal performance guarantees. The performance of our algorithm is captured by its regret, where the benchmark is the minimum possible cost attained when the statistical parameters of jobs are fully known. We prove upper bounds on the regret of our algorithm, and we derive a regret lower bound that is almost matching the proposed upper bounds. Our numerical results demonstrate the effectiveness of our algorithm and show that our theoretical regret analysis is nearly tight.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
9 Replies