HFT: Half Fine-Tuning for Large Language Models

ACL ARR 2025 February Submission3829 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large language models (LLMs) with one or more fine-tuning phases have become necessary to unlock various capabilities, enabling LLMs to follow natural language instructions and align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. This paper finds that LLMs can restore some original knowledge by regularly resetting partial parameters. Inspired by this, we introduce \underline{H}alf \underline{F}ine-\underline{T}uning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks. In contrast, the other half are frozen to retain previous knowledge. We provide a feasibility analysis from the optimization perspective and interpret the parameter selection operation as a regularization term. HFT could be seamlessly integrated into existing fine-tuning frameworks without changing the model architecture. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30\% reduction in training time.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: continual learning, fine-tuning
Contribution Types: NLP engineering experiment, Approaches low compute settings-efficiency, Position papers
Languages Studied: English
Submission Number: 3829
Loading