An improved analysis of per-sample and per-update clipping in federated learning

Published: 16 Jan 2024, Last Modified: 14 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: optimization, clipping, federated learning, decentralized learning, distributed optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We rigorously and precisely analyze the impact of per-sample and per-update clipping on the convergence of FedAvg
Abstract: Gradient clipping is key mechanism that is essential to differentially private training techniques in Federated learning. Two popular strategies are per-sample clipping, which clips the mini-batch gradient, and per-update clipping, which clips each user's model update. However, there has not been a thorough theoretical analysis of these two clipping methods. In this work, we rigorously analyze the impact of these two clipping techniques on the convergence of a popular federated learning algorithm FedAvg under standard stochastic noise and gradient dissimilarity assumptions. We provide a convergence guarantee given any arbitrary clipping threshold. Specifically, we show that per-sample clipping is guaranteed to converge to the neighborhood of the stationary point, with the size dependent on the stochastic noise, gradient dissimilarity, and clipping threshold. In contrast, the convergence to the stationary point can be guaranteed with a sufficiently small stepsize in per-update clipping at the cost of more communication rounds. We further provide insights into understanding the impact of the improved convergence analysis in the differentially private setting.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 5493
Loading