Controlling Information Leakage in Concept Bottleneck Models with Trees

27 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: interpretable models, concept bottleneck model, information leakage, decision tree
Abstract: As AI models grow larger, the demand for accountability and interpretability has become increasingly critical for understanding their decision-making processes. Concept Bottleneck Models (CBMs) have gained attention for enhancing interpretability by mapping inputs to intermediate concepts before making final predictions. However, CBMs often suffer from information leakage, where additional input data, not captured by the concepts, is used to improve task performance, complicating the interpretation of downstream predictions. In this paper, we introduce a novel approach for training both joint and sequential CBMs that allows us to identify and control leakage using decision trees. Our method quantifies leakage by comparing the decision paths of hard CBMs with their soft, leaky counterparts. Specifically, we show that soft leaky CBMs extend the decision paths of hard CBMs, particularly in cases where concept information is incomplete. Using this insight, we develop a technique to better inspect and manage leakage, isolating the subsets of data most affected by this. Through synthetic and real-world experiments, we demonstrate that controlling leakage in this way not only improves task accuracy but also yields more informative and transparent explanations.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10191
Loading