Efficiently Deploying LLMs with Controlled Risk

27 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: natural language processing, selective prediction, uncertainty quantification, large language models, compound AI systems
TL;DR: we present a LLM routing system that incorporates selective prediction alongside cost efficiency, based on data-efficient calibration of LLM token probabilities
Abstract: Deploying large language models in production requires simultaneous attention to efficiency and risk control. Prior work has shown the possibility to cut costs while maintaining similar accuracy, but has neglected to focus on risk control. By contrast, here we present hierarchical chains with multi-level abstention (HCMA), which use model-intrinsic uncertainty to delegate queries along the LLM intelligence hierarchy, enabling training-free model switching based solely on black-box API calls. Our framework presents novel trade-offs between efficiency and risk. For example, deploying HCMA on MMLU cuts the error rate of Llama3 405B by 30\% when the model is allowed to abstain on 20\% of the queries. To calibrate HCMA for optimal performance, our approach uses data-efficient logistic regressions (based on a simple nonlinear feature transformation), which require only 50 or 100 labeled examples to achieve excellent calibration error (ECE), cutting ECE by 50\% compared to naive Platt scaling. On free-form generation tasks, we find that chain-of-thought is ineffectual for selective prediction, whereas zero-shot prompting yields drives error to 0\% on TruthfulQA at high abstention rates. As LLMs are increasingly deployed across computing environments with different capabilities (such as mobile, laptop, and cloud), our framework paves the way towards maintaining deployment efficiency while putting in place sharp risk controls.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9881
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview