Conditional Image Synthesis With Auxiliary Classifier GANs

Augustus Odena, Christopher Olah & Jonathon Shlens

Feb 17, 2017 (modified: Feb 17, 2017) ICLR 2017 workshop submission readers: everyone
  • Abstract: Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128 × 128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128 × 128 samples are more than twice as discriminable as artificially resized 32 × 32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.
  • TL;DR: New GAN architecture that generates samples from all 1000 ImageNet classes. Two new methods for measuring sample quality and diversity.
  • Conflicts: google.com

Loading