Keywords: Neural networks, Deep reinforcement learning, Actor-critic model, Autonomous driving, Carla simulator
TL;DR: An actor-critic reinforcement learning approach with multi-step returns applied to autonomous driving with Carla simulator.
Abstract: Autonomous driving is still considered as an “unsolved problem” given its inherent important variability and that many processes associated with its development like vehicle control and scenes recognition remain open issues. Despite reinforcement learning algorithms have achieved notable results in games and some robotic manipulations, this technique has not been widely scaled up to the more challenging real world applications like autonomous driving. In this work, we propose a deep reinforcement learning (RL) algorithm embedding an actor critic architecture with multi-step returns to achieve a better robustness of the agent learning strategies when acting in complex and unstable environments. The experiment is conducted with Carla simulator offering a customizable and realistic urban driving conditions. The developed deep actor RL guided by a policy-evaluator critic distinctly surpasses the performance of a standard deep RL agent.
5 Replies
Loading