Generative Code Modeling with Graphs

Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, Oleksandr Polozov

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Generative models forsource code are an interesting structured prediction problem, requiring to reason about both hard syntactic and semantic constraints as well as about natural, likely programs. We present a novel model for this problem that uses a graph to represent the intermediate state of the generated output. Our model generates code by interleaving grammar-driven expansion steps with graph augmentation and neural message passing steps. An experimental evaluation shows that our new model can generate semantically meaningful expressions, outperforming a range of strong baselines.
  • Keywords: Generative Model, Source Code, Graph Learning
  • TL;DR: Representing programs as graphs including semantics helps when generating programs
0 Replies