Leveraging Variable Sparsity to Refine Pareto Stationarity in Multi-Objective Optimization

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-Objective Optimization, Machine Learning, Deep Learning, Multi-task Learning, Gradient-Based Optimization
TL;DR: We introduce the solution concept called RPS, together with an algorithm RP-MGDA, that gives sharper solutions for gradient-based MOO
Abstract: Gradient-based multi-objective optimization (MOO) is essential in modern machine learning, with applications in e.g., multi-task learning, federated learning, algorithmic fairness and reinforcement learning. In this work, we first reveal some limitations of Pareto stationarity, a widely accepted first-order condition for Pareto optimality, in the presence of sparse function-variable structures. Next, to account for such sparsity, we propose a novel solution concept termed Refined Pareto Stationarity (RPS), which we prove is always sandwiched between Pareto optimality and Pareto stationarity. We give an efficient partitioning algorithm to automatically mine the function-variable dependency and substantially trim non-optimal Pareto stationary solutions. Then, we show that gradient-based descent algorithms in MOO can be enhanced with our refined partitioning. In particular, we propose Multiple Gradient Descent Algorithm with Refined Partition (RP-MGDA) as an example method that converges to RPS, while still enjoying a similar per-step complexity and convergence rate. Lastly, we validate our approach through experiments on both synthetic examples and realistic application scenarios where distinct function-variable dependency structures appear. Our results highlight the importance of exploiting function-variable structure in gradient-based MOO, and provide a seamless enhancement to existing approaches.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8647
Loading