A Fast and Provable Algorithm for Sparse Phase Retrieval

Published: 16 Jan 2024, Last Modified: 19 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Sparse Phase Retrieval, Quadratic Convergence, Newton-type Method, Hard Thresholding, Nonconvex Optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We study the sparse phase retrieval problem, which seeks to recover a sparse signal from a limited set of magnitude-only measurements. In contrast to prevalent sparse phase retrieval algorithms that primarily use first-order methods, we propose an innovative second-order algorithm that employs a Newton-type method with hard thresholding. This algorithm overcomes the linear convergence limitations of first-order methods while preserving their hallmark per-iteration computational efficiency. We provide theoretical guarantees that our algorithm converges to the $s$-sparse ground truth signal $\boldsymbol{x}^{\natural} \in \mathbb{R}^n$ (up to a global sign) at a quadratic convergence rate after at most $O(\log (\Vert\boldsymbol{x}^{\natural} \Vert /x_{\min}^{\natural}))$ iterations, using $\Omega(s^2\log n)$ Gaussian random samples. Numerical experiments show that our algorithm achieves a significantly faster convergence rate than state-of-the-art methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 7574
Loading