Keywords: Anchor-based Method, Clustering, Large Scale, Knowledge Graph Embedding
Abstract: Traditional knowledge graph embedding (KGE) models map entities and relations to unique embedding vectors in a shallow lookup manner. As the scale of data becomes larger, this manner will raise unaffordable computational costs. Anchor-based strategies have been treated as effective ways to alleviate such efficiency problems by propagation on representative entities instead of the whole graph. However, most existing anchor-based KGE models select the anchors in a primitive manner, which limits their performance. To this end, we propose a novel anchor-based strategy for KGE, i.e., a relational clustering-based anchor selection strategy (RecPiece), where two characteristics are leveraged, i.e., (1) representative ability of the cluster centroids and (2) descriptive ability of relation types in KGs. Specifically, we first perform clustering over features of factual triplets instead of entities, where cluster number is naturally set as number of relation types since each fact can be characterized by its relation in KGs. Then, representative triplets are selected around the clustering centroids, further mapped into corresponding anchor entities. Extensive experiments on six datasets show that RecPiece achieves higher performances but comparable or even fewer parameters compared to previous anchor-based KGE models, indicating that our model can select better anchors in a more scalable way.
Primary Area: Learning theory
Submission Number: 4932
Loading