AI-based analysis of radiologist’s eye movements for fatigue estimation: a pilot study on chest X-raysDownload PDF

17 May 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Radiologist-AI interaction is a novel area of research of potentially great impact. It has been observed in the literature that the radiologists’ performance deteriorates towards the shift ends and there is a visual change in their gaze patterns. However, the quantitative features in these patterns that would be predictive of fatigue have not yet been discovered. A radiologist was recruited to read chest X-rays, while his eye movements were recorded. His fatigue was measured using the target concentration test and Stroop test having the number of analyzed X-rays being the reference fatigue metric. A framework with two convolutional neural networks based on UNet and ResNeXt50 architectures was developed for the segmentation of lung fields. This segmentation was used to analyze radiologist’s gaze patterns. With a correlation coefficient of 0.82, the eye gaze features extracted lung segmentation exhibited the strongest fatigue predictive powers in contrast to alternative features.
0 Replies

Loading