Real-TabPFN: Improving Tabular Foundation Models via Continued Pre-training With Real-World Data

Published: 09 Jun 2025, Last Modified: 09 Jun 2025FMSD @ ICML 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Tabular Foundation Models, TabPFN, Real-World Data
Abstract:

Foundation models for tabular data, like TabPFN, achieve strong performance on small datasets when pre-trained solely on synthetic data. We show that this performance can be significantly boosted by a targeted continued pre-training phase. Specifically, we demonstrate that leveraging a small, curated collection of large, real-world datasets for continued pre-training yields superior downstream predictive accuracy compared to using broader, potentially noisier corpora like CommonCrawl or GitTables. Our resulting model, Real-TabPFN, achieves substantial performance gains on 29 datasets from the OpenML AutoML Benchmark.

Submission Number: 55
Loading