Online Structure Learning for Sum-Product Networks with Gaussian LeavesDownload PDF

03 Mar 2021 (modified: 17 Feb 2017)ICLR 2017 workshop submissionReaders: Everyone
  • Abstract: Sum-product networks (SPNs) have recently emerged as an attractive representation due to their dual view as a special type of deep neural network with clear semantics and a special type of probabilistic graphical model for which inference is always tractable. Those properties follow from some conditions (i.e., completeness and decomposability) that must be respected by the structure of the network. As a result, it is not easy to specify a valid sum-product network by hand and therefore structure learning techniques are typically used in practice. This paper describes the first online structure learning technique for continuous SPNs with Gaussian leaves. We also introduce an accompanying new parameter learning technique.
  • Keywords: Deep learning
  • Conflicts:,
0 Replies