Cross-Task Knowledge Transfer for Visually-Grounded NavigationDownload PDF

27 Sep 2018 (modified: 21 Dec 2018)ICLR 2019 Conference Blind SubmissionReaders: Everyone
  • Abstract: Recent efforts on training visual navigation agents conditioned on language using deep reinforcement learning have been successful in learning policies for two different tasks: learning to follow navigational instructions and embodied question answering. In this paper, we aim to learn a multitask model capable of jointly learning both tasks, and transferring knowledge of words and their grounding in visual objects across tasks. The proposed model uses a novel Dual-Attention unit to disentangle the knowledge of words in the textual representations and visual objects in the visual representations, and align them with each other. This disentangled task-invariant alignment of representations facilitates grounding and knowledge transfer across both tasks. We show that the proposed model outperforms a range of baselines on both tasks in simulated 3D environments. We also show that this disentanglement of representations makes our model modular, interpretable, and allows for zero-shot transfer to instructions containing new words by leveraging object detectors.
9 Replies