A glimpse into the Unobserved: Runoff simulation for ungauged catchments with LSTMsDownload PDF

28 Sept 2018 (modified: 05 May 2023)NIPS 2018 Workshop Spatiotemporal Blind SubmissionReaders: Everyone
Keywords: Hydrology, LSTMs, Time series, Ungauged Basins
TL;DR: A case study of using LSTMs for Rainfall-Runoff simulation in ungauged catchments.
Abstract: Runoff predictions of a river from meteorological inputs is a key task in the field of hydrology. However, current hydrological models require a substantial amount of parameter tuning on basis of historical records. If no historical runoff observations are available it is very challenging to produce good predictions. In this study we explore the capability of LSTMs for simulating the runoff for these ungauged cases. A single LSTM is trained to learn a general hydrological model from hundreds of catchments throughout the contiguous United States of America and evaluated against catchments not used during training. Our results suggest that LSTMs a) are able to learn a general hydrological model and b) in the majority of catchments outperform an established hydrological model, which was especially trained for these catchments.
2 Replies

Loading