A Non-Asymptotic Analysis of Oversmoothing in Graph Neural NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: graph neural networks, oversmoothing, representational power, theory, deep learning
TL;DR: We precisely characterize the mechanism of overmoothing via a non-asymptotic analysis and answer why oversmoothing happens in shallow GNNs.
Abstract: Oversmoothing is a central challenge of building more powerful Graph Neural Networks (GNNs). While previous works have only demonstrated that oversmoothing is inevitable when the number of graph convolutions tends to infinity, in this paper, we precisely characterize the mechanism behind the phenomenon via a non-asymptotic analysis. Specifically, we distinguish between two different effects when applying graph convolutions—an undesirable mixing effect that homogenizes node representations in different classes, and a desirable denoising effect that homogenizes node representations in the same class. By quantifying these two effects on random graphs sampled from the Contextual Stochastic Block Model (CSBM), we show that oversmoothing happens once the mixing effect starts to dominate the denoising effect, and the number of layers required for this transition is $O(\log N/\log (\log N))$ for sufficiently dense graphs with $N$ nodes. We also extend our analysis to study the effects of Personalized PageRank (PPR), or equivalently, the effects of initial residual connections on oversmoothing. Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth and are outperformed by the graph convolution approach on certain graphs. Finally, we support our theoretical results with numerical experiments, which further suggest that the oversmoothing phenomenon observed in practice can be magnified by the difficulty of optimizing deep GNN models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
11 Replies

Loading