Abstract: Effectively handling long contexts is challenging for Large Language Models (LLMs) due to the rarity of long texts, high computational demands, and substantial forgetting of short-context abilities. Recent approaches have attempted to construct long contexts for instruction tuning, but these methods often require LLMs or human interventions, which are both costly and limited in length and diversity. Also, the drop in short-context performances of present long-context LLMs remains significant. In this paper, we introduce Flora, an effortless (human/LLM-free) long-context construction strategy. Flora can markedly enhance the long-context performance of LLMs by arbitrarily assembling short instructions based on categories and instructing LLMs to generate responses based on long-context meta-instructions. This enables Flora to produce contexts of arbitrary length and scale with rich diversity, while only slightly compromising short-context performance. Experiments on Llama3-8B-Instruct and QwQ-32B show that LLMs enhanced by Flora excel in three long-context benchmarks while maintaining strong performances in short-context tasks.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: data augmentation
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 1465
Loading