Adam through a Second-Order Lens

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Optimisation for Deep Learning, Second-Order Optimisation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We combine second-order heuristics from K-FAC with the effective update directions of Adam to produce a hybrid optimiser, from which interesting conclusions can be drawn.
Abstract: Research into optimisation for deep learning is characterised by a tension between the computational efficiency of first-order, gradient-based methods (such as SGD and Adam) and the theoretical efficiency of second-order, curvature-based methods (such as quasi-Newton methods and K-FAC). We seek to combine the benefits of both approaches into a single computationally-efficient algorithm. Noting that second-order methods often depend on stabilising heuristics (such as Levenberg-Marquardt damping), we propose AdamQLR: an optimiser combining damping and learning rate selection techniques from K-FAC (Martens and Grosse, 2015) with the update directions proposed by Adam, inspired by considering Adam through a second-order lens. We evaluate AdamQLR on a range of regression and classification tasks at various scales, achieving competitive generalisation performance vs runtime.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5299
Loading