Joint Modeling of Visual Objects and Relations for Scene Graph GenerationDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Scene Graph Generation, Conditional Random Field, Mean-field Variational Inference
TL;DR: This work proposes a principled model to predict a whole scene graph by jointly capturing all the label dependency within it.
Abstract: An in-depth scene understanding usually requires recognizing all the objects and their relations in an image, encoded as a scene graph. Most existing approaches for scene graph generation first independently recognize each object and then predict their relations independently. Though these approaches are very efficient, they ignore the dependency between different objects as well as between their relations. In this paper, we propose a principled approach to jointly predict the entire scene graph by fully capturing the dependency between different objects and between their relations. Specifically, we establish a unified conditional random field (CRF) to model the joint distribution of all the objects and their relations in a scene graph. We carefully design the potential functions to enable relational reasoning among different objects according to knowledge graph embedding methods. We further propose an efficient and effective algorithm for inference based on mean-field variational inference, in which we first provide a warm initialization by independently predicting the objects and their relations according to the current model, followed by a few iterations of relational reasoning. Experimental results on both the relationship retrieval and zero-shot relationship retrieval tasks prove the efficiency and efficacy of our proposed approach.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: zip
12 Replies