LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon GameplayDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents' social behaviors. Results affirm the framework's effectiveness in creating adaptive agents and suggest LLM-based agents' potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field's research and applications.
Paper Type: long
Research Area: Computational Social Science and Cultural Analytics
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview