Abstract: Mixture-of-Experts (MoE) architectures have emerged as a promising paradigm for scaling large language models (LLMs) with sparse activation of task-specific experts. Despite their computational efficiency during inference, the massive overall parameter footprint of MoE models (e.g., GPT-4) introduces critical challenges for practical deployment. Current pruning approaches often fail to address two inherent characteristics of MoE systems: 1).intra-layer expert homogeneity where experts within the same MoE layer exhibit functional redundancy, and 2). inter-layer similarity patterns where deeper layers tend to contain progressively more homogeneous experts. To tackle these issues, we propose Cluster-driven Expert Pruning, a novel two-stage framework for adaptive task-specific compression of MoE LLMs. C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer using parameter similarity metrics, followed by global cluster pruning, which eliminates redundant clusters across all layers through a unified importance scoring mechanism that accounts for cross-layer homogeneity. We validate C-Prune through extensive experiments on multiple MoE models and benchmarks. The results demonstrate that \model{} effectively reduces model size while outperforming existing MoE pruning methods
Paper Type: Short
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: pruning
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Reproduction study, Approaches to low-resource settings, Approaches low compute settings-efficiency, Publicly available software and/or pre-trained models, Data resources, Data analysis
Languages Studied: English
Submission Number: 5898
Loading