ASMIL: Attention-Stabilized Multiple Instance Learning for Whole-Slide Imaging

ICLR 2026 Conference Submission13 Authors

01 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Whole slide image, Multiple instance learning
Abstract: Attention-based multiple instance learning (MIL) has emerged as a powerful framework for whole slide image (WSI) diagnosis, leveraging attention to aggregate instance-level features into bag-level predictions. Despite this success, we find that such methods exhibit a new failure mode: unstable attention dynamics. Across four representative attention-based MIL methods and two public WSI datasets, we observe that attention distributions oscillate across epochs rather than converging to a consistent pattern, degrading performance. This instability adds to two previously reported challenges: overfitting and over-concentrated attention distribution. To simultaneously overcome these three limitations, we introduce attention-stabilized multiple instance learning (ASMIL), a novel unified framework. ASMIL uses an anchor model to stabilize attention, replaces softmax with a normalized sigmoid function in the anchor to prevent over-concentration, and applies token random dropping to mitigate overfitting. Extensive experiments demonstrate that ASMIL achieves up to a 6.49% F1 score improvement over state-of-the-art methods. Moreover, integrating the anchor model and normalized sigmoid into existing attention-based MIL methods consistently boosts their performance, with F1 score gains up to 10.73%. All code and data are publicly available at https://anonymous.4open.science/r/ASMIL-5018/.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 13
Loading