Latte: Latent Attention for Linear Time Transformers

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Sequence Modelling, Long Sequences, Linear Attention, Latent Variable Model
TL;DR: A latent variable model for linear time attention
Abstract: The time complexity of the standard attention mechanism in transformers scales quadratically with sequence length. We propose a probabilistic framework for attention, enabling us to derive a novel low-rank linear re-parameterisation of both bidirectional and causal cases, based on defining a latent variable model. Our method can be seamlessly integrated as a drop-in replacement for the standard attention mechanism. Additionally, this framework provides a natural extension for combining local standard attention with our global linear attention. This approach allows us to extend the context length of existing large pre-trained models with only a few additional training steps. The resulting ``Latte Transformer'' achieves performance comparable to standard attention and other state-of-the-art models, while maintaining linear time and memory complexity, along with constant-time next-token prediction during inference.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11402
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview