Scrutinize What We Ignore: Reining In Task Representation Shift Of Context-Based Offline Meta Reinforcement Learning

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: offline meta reinforcement learning, performance improvement guarantee, task representation shift
TL;DR: We give performance improvement guarantee of prior COMRL works and identify a new issue called task representation shift, theoretically demonstrating that reining in task representation shift properly can achieve monotonic performance improvements.
Abstract: Offline meta reinforcement learning (OMRL) has emerged as a promising approach for interaction avoidance and strong generalization performance by leveraging pre-collected data and meta-learning techniques. Previous context-based approaches predominantly rely on the intuition that alternating optimization between the context encoder and the policy can lead to performance improvements, as long as the context encoder follows the principle of maximizing the mutual information between the task variable $M$ and its latent representation $Z$ ($I(Z;M)$) while the policy adopts the standard offline reinforcement learning (RL) algorithms conditioning on the learned task representation. Despite promising results, the theoretical justification of performance improvements for such intuition remains underexplored. Inspired by the return discrepancy scheme in the model-based RL field, we find that the previous optimization framework can be linked with the general RL objective of maximizing the expected return, thereby explaining performance improvements. Furthermore, after scrutinizing this optimization framework, we observe that the condition for monotonic performance improvements does not consider the variation of the task representation. When these variations are considered, the previously established condition may no longer be sufficient to ensure monotonicity, thereby impairing the optimization process. We name this issue \underline{task representation shift} and theoretically prove that the monotonic performance improvements can be guaranteed with appropriate context encoder updates. We use different settings to rein in the task representation shift on three widely adopted training objectives concerning maximizing $I(Z;M)$ across different data qualities. Empirical results show that reining in the task representation shift can indeed improve performance. Our work opens up a new avenue for OMRL, leading to a better understanding between the task representation and performance improvements.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2767
Loading