Gradient-Aligned Calibration for Post-Training Quantization of Diffusion Models

Published: 26 Jan 2026, Last Modified: 11 Feb 2026ICLR 2026 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Quantization, Diffusion
TL;DR: A paper that propose adaptive sample weight to address gradient conflict problem of diffusion quantization
Abstract: Diffusion models have shown remarkable performance in image synthesis by progressively estimating a smooth transition from a Gaussian distribution of noise to a real image. Unfortunately, their practical deployment is limited by slow inference speed, high memory usage, and the computational demands of the noise estimation process. Post-training quantization (PTQ) emerges as a promising solution to accelerate sampling and reduce the memory overhead of diffusion models. Existing PTQ methods for diffusion models typically apply uniform weights to calibration samples across timesteps, which is sub-optimal since data at different timesteps may contribute differently to the diffusion process. Additionally, due to varying activation distributions and gradients across timesteps, a uniform quantization approach is sub-optimal. Each timestep requires a different gradient direction for optimal quantization, and treating them equally can lead to conflicting gradients that degrade performance. In this paper, we propose a novel PTQ method that addresses these challenges by assigning appropriate weights to calibration samples. Specifically, our approach learns to assign optimal weights to calibration samples to align the quantized model’s gradients across timesteps, facilitating the quantization process. Extensive experiments on CIFAR-10, LSUN-Bedrooms, and ImageNet datasets demonstrate the superiority of our method compared to other PTQ methods for diffusion models.
Primary Area: generative models
Submission Number: 17689
Loading