LLCP: Learning Latent Causal Processes for Reasoning-based Video Question Answer

Published: 16 Jan 2024, Last Modified: 19 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Video Question Answer, Visual Reasoning, Causal Represetation Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Current approaches to Video Question Answering (VideoQA) primarily focus on cross-modality matching, which is limited by the requirement for extensive data annotations and the insufficient capacity for causal reasoning (e.g. attributing accidents). To address these challenges, we introduce a causal framework for video reasoning, termed Learning Latent Causal Processes (LLCP). At the heart of LLCP lies a multivariate generative model designed to analyze the spatial-temporal dynamics of objects within events. Leveraging the inherent modularity of causal mechanisms, we train the model through self-supervised local auto-regression eliminating the need for annotated question-answer pairs. During inference, the model is applied to answer two types of reasoning questions: accident attribution, which infers the cause from observed effects, and counterfactual prediction, which predicts the effects of counterfactual conditions given the factual evidence. In the first scenario, we identify variables that deviate from the established distribution by the learned model, signifying the root cause of accidents. In the second scenario, we replace embeddings of previous variables with counterfactual ones, enabling us to forecast potential developments. Once we have identified these cause/effect variables, natural language answers are derived through a combination of grammatical parsing and a pre-trained vision-language model. We assess the efficacy of LLCP on both synthetic and real-world data, demonstrating comparable performance to supervised methods despite our framework using no paired textual annotations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 910
Loading