Keywords: network pruning, low-rank, compression, sparsification, large language models, outlier features
Abstract: The recent paradigm shift to large-scale foundation models has brought about a new era for deep learning that, while has found great success in practice, has also been plagued by prohibitively expensive costs in terms of high memory consumption and compute. To mitigate these issues, there has been a concerted effort in post-hoc neural network pruning techniques that do not require costly retraining. Despite the considerable progress being made, existing methods often exhibit a steady drop in model performance as the compression increases. In this paper, we present a novel approach to compressing large transformers, coined OATS, that compresses the model weights by approximating each weight matrix as the sum of a sparse matrix and a low-rank matrix. Prior to the decomposition, the weights are first scaled by the second moment of their input embeddings, so as to ensure the preservation of outlier features recently observed in large transformer models. Without retraining, OATS achieves state-of-the-art performance when compressing large language models, such as Llama-3 and Phi-3, and vision transformers, such as Google's ViT and DINOv2, by up to $60\\%$, all while speeding up the model's inference on a CPU by up to $1.37\times$ compared to prior pruning methods.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3132
Loading