Explaining Veracity Predictions with Evidence Summarization: A Multi-Task Model ApproachDownload PDF

Anonymous

16 Oct 2023ACL ARR 2023 October Blind SubmissionReaders: Everyone
Abstract: The rapid dissemination of misinformation through social media increased the importance of automated fact-checking. Furthermore, studies on what deep neural models pay attention to when making predictions have increased in recent years. While significant progress has been made in this field, it has not yet reached a level of reasoning comparable to human reasoning. To address these gaps, we propose a multi-task explainable neural model for misinformation detection. Specifically, this work formulates an explanation generation process of the model's veracity prediction as a text summarization problem. Additionally, the performance of the proposed model is discussed on publicly available datasets and the findings are evaluated with related studies.
Paper Type: short
Research Area: Interpretability and Analysis of Models for NLP
Contribution Types: Model analysis & interpretability, NLP engineering experiment
Languages Studied: English
Consent To Share Submission Details: On behalf of all authors, we agree to the terms above to share our submission details.
0 Replies

Loading