Beyond Predefined Depots: A Dual-Mode Generative DRL Framework for Proactive Depot Generation in Location-Routing Problem
Keywords: Generative DRL, Depot Generation, Routing planning
TL;DR: A generative DRL framework for proactively generating depots based on customer requests, enabling dual-mode depots generation and efficient route planning, with cost reductions and adaptability in scenarios requiring rapid depots setup and adjustment
Abstract: The Location-Routing Problem (LRP), which combines the challenges of facility (depot) locating and vehicle route planning, is critically constrained by the reliance on predefined depot candidates, limiting the solution space and potentially leading to suboptimal outcomes. Previous research on LRP without predefined depots is scant and predominantly relies on heuristic algorithms that iteratively attempt depot placements across a planar area. Such approaches lack the ability to proactively generate depot locations that meet specific geographic requirements, revealing a notable gap in current research landscape. To bridge this gap, we propose a data-driven generative DRL framework, designed to proactively generate depots for LRP without predefined depot candidates, solely based on customer requests data which include geographic and demand information. It can operate in two distinct modes: direct generation of exact depot locations, and the creation of a multivariate Gaussian distribution for flexible depots sampling. By extracting depots' geographic pattern from customer requests data, our approach can dynamically respond to logistical needs, identifying high-quality depot locations that further reduce total routing costs compared to traditional methods. Extensive experiments demonstrate that, for a same group of customer requests, compared with those depots identified through random attempts, our framework can proactively generate depots that lead to superior solution routes with lower routing cost. The implications of our framework potentially extend into real-world applications, particularly in emergency medical rescue and disaster relief logistics, where rapid establishment and adjustment of depot locations are paramount, showcasing its potential in addressing LRP for dynamic and unpredictable environments.
Supplementary Material: pdf
Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 997
Loading